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A method to extend low-resolution phases has been devel-

oped using histogram matching not only of the electron

density itself but also of histograms obtained from the

different levels of detail provided by the wavelet transform

of the electron density. It is shown that the method can extend

phases from 10 AÊ to around 6±7 AÊ on a wide range of trial

structures differing in size, space group and solvent content.

This level of phase extension can improve the electron-density

map from little more than a molecular envelope to one in

which secondary structure can often be identi®ed.
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1. Introduction

In order to calculate an electron-density map which can be

interpreted in terms of an atomic model, both the phases and

the amplitudes of the structure factors are required. However,

only the diffraction amplitudes can be measured experimen-

tally, giving rise to the so-called `phase problem' in crystal-

lography. Methods which involve the collection of more than

one X-ray data set, such as multiple isomorphous replacement

and anomalous scattering, or the use of a model from a closely

related structure in the molecular-replacement method can

often provide the required phases, although this is not always

the case.

The use of heavy atoms often means that the phases

obtained from further experiments are to a lower resolution

than is available for the original diffraction amplitudes.

Density-modi®cation and image-processing techniques have

been developed which can extend the phases to the resolution

of the native data (Zhang & Main, 1990b; Cowtan & Main,

1993; Vellieux, 1995; Abrahams, 1995). These include electron-

density histogram matching over the protein region, solvent

¯attening or `¯ipping', Sayre's equation and, where appro-

priate, the use of averaging both within a crystal, through non-

crystallographic symmetry, and between multiple crystal

forms. These methods require the available phases to be of

suf®ciently high resolution to treat the protein and solvent

regions separately; in particular, the `atomicity' constraints of

Sayre's equation restrict their use. Typically, phases to about

3±4 AÊ are required. Problems in obtaining suitable heavy-

atom derivatives or in measuring small anomalous differences

mean there any many cases where no such phases are available

and the protein crystal structure must be solved ab initio, i.e.

from the diffraction amplitudes alone.

`Direct methods' which exploit relationships between

structure factors via a probabilistic approach are now used

routinely to solve the structures of crystals of small molecules

(Main et al., 1980; Yao, 1981; Sheldrick, 1985). However, the

probabilities are dependent on the number of atoms in the



research papers

626 Wilson & Main � Wavelet transforms Acta Cryst. (2000). D56, 625±633

structure and the reliability of the phases obtained decreases

as the number of atoms increases. This has limited the success

of these methods to structures of less than 200 atoms. More

recently, the combination of these reciprocal-space constraints

with real-space constraints has increased their ef®ciency

enormously (Miller et al., 1994; Sheldrick & Gould, 1995). In

this approach, automatic electron-density map interpretation

in the form of `peak picking' is used alternately with recip-

rocal-space re®nement to improve the phases and has led to

the solution of structures of around 1000 atoms. Although the

complexity of structures which can now be solved in this way

has increased so dramatically, the necessary assumption of

atomic resolution currently restricts the methods to the solu-

tion of structures for which data to a resolution of at least

1.2 AÊ are available.

Signi®cant progress has also been made at very low reso-

lution and methods have been developed which can determine

the molecular envelope of macromolecular structures,

providing low-resolution phases in the most general case. The

problem is then how to extend these phases to a resolution at

which the existing density-modi®cation and image-processing

techniques can be applied. Increasing the resolution can be

seen as adding the right amount of detail to the correct place

in the electron-density map and it has been found that wavelet

analysis, which effectively divides the electron density into

different levels of detail, can give precise control over this.

2. Low-resolution phasing

Methods to determine the molecular envelope rely on the fact

that there is little ¯uctuation within the protein region at low

resolution and the electron density can be considered smooth

and uniform within the envelope. Furthermore, an estimate

for the volume of protein to be determined can be calculated

when the molecular weight of the protein is known. Assuming

the protein to be roughly spherical allows it to be modelled by

a sphere of appropriate volume. This simple approach was

taken by Kraut (1958) and has recently been used again with

some success by a number of authors (see, for example, Harris,

1995; Andersson, 1999). The sphere is systematically moved

around the unit cell and structure factors are calculated for

each position and compared with the observed amplitudes. In

an extension of this idea, a small number of large spheres are

used in the `few atoms model' method (Lunin et al., 1995;

Podjarny & Urzhumtsev, 1997) in which the spheres are

positioned randomly throughout the cell. A very large number

of these simple models are generated and a set of structure

factors calculated for each. The phase sets of those models

considered to have suitable amplitude correlations are then

merged in a clustering procedure. In contrast, a large number

of point scatterers, again consistent with the expected solvent

content, can be used instead to model the electron density.

Subbiah (1991) used minimization of the difference between

the observed and calculated amplitudes in order to adjust such

an initial random model until the point scatterers converged in

a cluster. Often, the solvent is identi®ed in this manner rather

than the protein region; a method to determine which has

been found has also been suggested by Subbiah (1993). A

Monte Carlo approach to the determination of the molecular

envelope from randomly generated electron density was

developed by Lunin et al. (1990), where electron-density

histograms are used to determine plausible phase sets from

which cluster analysis leads to a ®nal electron-density map

showing the molecular envelope. A similar method has also

been implemented by one of the present authors (Main,

unpublished results), in which electron-density histogram

matching, a technique which is used routinely in density

modi®cation at high resolution (Zhang & Main, 1990a), is used

to systematically alter the random starting density. The success

of this technique at both high and low resolution has moti-

vated the current research using histogram matching of the

wavelet coef®cients. Until the protein and solvent regions can

be properly identi®ed, the histogram matching must be

performed over the entire unit cell, unlike its implementation

at high resolution where only the protein region is considered.

The wavelet transform of the electron density allows histo-

grams corresponding to different levels of detail to be

matched simultaneously, thus extending the power of the

method.

3. The wavelet histograms

The procedure for histogram matching is described in detail in

Zhang (1993) and will not be repeated here. Its success relies

on the fact that electron-density histograms can be predicted.

At high resolution, the protein region can be considered

separately and it has been shown that the histograms for

different proteins are extremely similar and depend only on

the resolution (Lunin & Skovoroda, 1991; Zhang & Main,

1990a). At very low resolution, the electron density from the

entire unit cell must be used and molecular packing as well as

the percentage of solvent play a part in determining the

histogram. However, it has been found that considering the

asymmetric unit only reduces the dependence on packing

Figure 1
Detail histograms from a two-level transform; D1 is calculated from the
coef®cients corresponding to the smallest details and D2 from the next
level of detail. The thick lines show the actual histograms calculated from
a typical protein after smoothing with a Gaussian kernel and the thin lines
show the histograms predicted from Mallat's mathematical model.



arrangements suf®ciently so that only resolution and solvent

content need to be addressed (Main, 1998). In both cases, a

library of histograms can be compiled.

We have described the basic mathematics of the discrete

wavelet transform (Main & Wilson, 2000). Intuitively, each

level of the transform can be thought of as a pair of ®lters: a

smoothing ®lter, S, which provides a kind of average between

neighbouring points, and a related ®lter, D, which stores the

differences between this smoothed version and the original

data (which we call the details). The information can be stored

in the coef®cients of certain functions which depend on the

particular ®lter used. A single level of a two-dimensional

transform would require smoothing and detail ®lters in both

directions and we would need to store the coef®cients of

functions corresponding to a smoothing in both directions

(SS), the details in both directions (DD) and a smoothing in

one direction but detail in the other (SD). Initially, three-

dimensional wavelet transforms were considered with a single

level, giving four different types of coef®cient, so that four

different histograms can be accumulated and denoted SSS,

SSD, SDD and DDD. The SSS histogram looks like a low-

resolution electron-density histogram as might be expected,

since regardless of the wavelet functions used, what we have

here are coef®cients of a `smoother electron density', i.e. the

electron density with the ®ner details removed. More

surprisingly, the detail histograms look very similar to those

obtained by Mallat (1989) for two-dimensional images. An

effective separation of the electron density is required in order

to obtain different histograms which can be matched simul-

taneously, but the three-dimensional transform resulted in the

important information being compressed into a small number

of coef®cients. In particular, the coef®cients in the DDD

histogram were all very close to zero. This is not so surprising

as these coef®cients encode the changes in the electron

density, so that the DDD coef®cients can only be signi®cant

when there are notable changes in all three of the x, y and z

directions. In fact, the SDD histogram also contained very

little information and this effect was even more marked if

more than one level of the transform was performed. This

demonstrates the power of the technique for compression, one

of the important uses of wavelet analysis, but reduces the

histogram matching to little more than electron-density

histogram matching.

Consequently, one-dimensional wavelet transforms are

used in the current method, leading to three possible phase

sets for the resolution increase which can then be merged.

Unless the symmetry is such that the transforms are equiva-

lent, for example the x and y transforms in space group P3121,

the three transforms give independent results. Several ways of

combining the results based on how well the results from the

three transforms agree have been tried, but very little

improvement has been gained over a straightforward aver-

aging. The procedure is outlined in the next section. In this

case a two-level transform is used, giving coef®cients cor-

responding to the smoothed electron density and two different

levels of detail. Therefore three histograms are available,

denoted S, D1 and D2, for each of x, y and z. The S histograms

for one-dimensional transforms again look like low-resolution

electron-density histograms and therefore could also be

predicted. However, we have found that these coef®cients

change least as the resolution increases, with the cor-

responding wavelet functions forming a base to which new

details can be added, and the S histograms are not predicted

but the coef®cients from the previous resolution level are used

in the transform, enabling these coef®cients to keep their

position. Indeed, we have found that this is more successful

than using the actual coef®cients from an S histogram calcu-

lated at the increased resolution, where this positional infor-

mation is lost. Both the D1 and D2 histograms contain

signi®cant information and typical examples are shown in

Fig. 1. These are independent of the protein in question and in

fact look remarkably similar to the detail histograms obtained

by Mallat (1989) for photographs. Mallat provided a mathe-

matical model to describe these histograms:

h�u� � K exp�ÿ�juj=����:

Since

R1
ÿ1

h�u� du � N;

where N is the number of coef®cients, we can obtain the

normalizing constant K from

K � N�=2�ÿ�1=��;

where ÿ(x) is the familiar gamma function de®ned by

ÿ�x� � R1
0

xtÿ1 exp�ÿx� dx:

The parameters � and � can be determined from the ®rst and

second moments of the histogram:
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Figure 2
Electron-density histograms at 9, 8, 7 and 6 AÊ (a) calculated from a
typical protein after smoothing with a Gaussian kernel and (b) calculated
from a two-Gaussian model.
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m1 �
R1
ÿ1
jujh�u� du

m2 �
R1
ÿ1

u2h�u� du;

giving

� � m2ÿ�2=��=m1ÿ�3=��

and

ÿ2�2=��=ÿ�1=��ÿ�3=��:

Fig. 1 shows histograms which have been calculated using

parameters obtained in this way. As the parameters depend

only on the resolution and the percentage of solvent, we have

been able to predict values for � and � as functions of reso-

lution for different solvent contents. These histograms have

been shown to work as ef®ciently as histograms calculated

using the actual values of the coef®cients.

4. The electron-density histograms

Although electron-density histogram matching is used both at

high resolution, where only the protein region is used, and at

very low resolution over the whole unit cell, histogram

libraries relating to the resolution considered here have not

previously been compiled and the wide range of resolution to

be taken into account for various solvent contents requires a

library of considerable size. As an alternative to such a library,

Main (1990) provided a formula for calculating electron-

density histograms at high resolution, in which the high-

density values are modelled by a histogram of Gaussian peaks

and the low-density values by a histogram of a randomly

distributed background. Similarly, Lunin & Skovoroda (1991)

used the two-component histogram model

v�t� � �F000=Vcell�v0�t� � q0�t�;
where the distributions v0(t) and q0(t) are calculated empiri-

cally to correspond with the histograms of known protein

Figure 4
(a) Cumulative mean phase errors for three proteins: 1an8 (thin line),
1myg (medium line) and 2aai (thick line). The phase errors given are for
all new phases between 10 AÊ and the resolution shown. (b) The mean
phase errors for each resolution cycle for 1an8, i.e. the phase errors given
are only for those phases within the resolution bin indicated by the bars.

Figure 3
Flowchart showing the various stages in the phase-extension procedure.



structures. However, the resolution we are considering here is

much lower and as it is too low for protein and solvent to be

distinguished accurately, we must consider the electron

density from the entire cell. The solvent has a large effect on

the histograms and we obtain bimodal distributions such as

those shown in Fig. 2(a). We have found that these histograms

can be described as a sum of two Gaussian functions, one

which corresponds roughly to the solvent and one to the

protein region (Fig. 2b),

h�u� � expfÿ��uÿ �1�=�1�2g � K expfÿ��uÿ �2�=�2�2g:
This model requires ®ve parameters to be determined: a mean

and variance for each Gaussian and a scale between the two

functions. These have been calculated empirically as functions

of resolution which depend only on the solvent content. At

resolutions beyond 10 AÊ , we have found no dependence on

molecular packing and the electron-density histograms

calculated in this way have been used successfully. Moreover,

it has been found that this description allows systematic

changes to the histograms which improve the results. For

example, if the variance of the ®rst Gaussian �1 is set at a

lower level than expected, the

phase errors are reduced. Since

�1 corresponds to differences in

the solvent density, this is

equivalent to solvent ¯attening

without the need to de®ne the

solvent region. Similarly,

increasing the variance of the

second Gaussian �2 can be seen

as sharpening the electron

density in the protein region.

Using density histograms at

slightly higher resolution than

required can also improve

results and this is easily

achieved as the parameters

describing the histograms are all

functions of the resolution.

5. Outline of the method

In addition to the ab initio

methods for producing very low

resolution phases, experimental

techniques are available which

will determine the molecular

envelope. Chemical-contrast

variation or multiple-wave-

length anomalous solvent-

contrast variation can be used to

de®ne the solvent region

(Carter et al., 1990; Fourme et

al., 1995) and electron-micro-

scopy images can be used to

provide a low-resolution model

(Ban et al., 1998). However, the

methods are all limited in their phasing power and additional

information is required for further progress. The current

research aims to extend such low-resolution phases using

wavelet analysis as part of the procedure shown in the ¯ow-

chart in Fig. 3. In order to test the method, magnitudes and

starting phases to 10 AÊ were calculated from known model

structures with solvent accounted for using Babinet's prin-

ciple. The wavelet transform is performed on the electron

density which has been calculated using all available phases,

i.e. the original 10 AÊ starting phases as well as the phases

obtained in previous cycles. The wavelet coef®cients obtained

are then matched to the histograms which have been predicted

for an increase in resolution as described above. The rela-

tionship between the wavelet coef®cients arising from space-

group symmetry is extremely complex and it is not practical to

implement symmetry at this stage. Thus, when the inverse

transform is performed to retrieve the higher resolution

electron density, the symmetry has been destroyed. However,

the differences between symmetry-related pixels can be used

to indicate the correctness of the map and the symmetry is

reimposed as the electron density is matched to its predicted
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Table 2
Use of starting phases with errors.

The mean phase errors (MPE) shown are in relation to those phases calculated from the re®ned structure. Similarly,
the correlation coef®cient given is for the correlation with the electron-density map with both magnitudes and
phases calculated from this structure. Case 1: starting phases to 10.0 AÊ were calculated from the re®ned structure
and calculated magnitudes were used throughout. Case 2: starting phases to 10.0 AÊ were calculated from a good
molecular-replacement model and observed magnitudes were used where available. Case 3: starting phases to
10.0 AÊ were calculated from a poor molecular-replacement model and observed magnitudes were used where
available.

Case

MPE on phases (�)
Total
MPE (�)

Correlation
coef®cientTo 10.0 AÊ 10.0±9.0 AÊ 10.0±8.0 AÊ 10.0±7.0 AÊ 10.0±6.0 AÊ

1 0.0 62.3 60.8 69.4 74.4 58.5 0.73
2 22.3 62.5 64.3 74.2 77.6 65.8 0.59
3 47.2 67.7 73.7 79.5 82.9 75.3 0.49

Table 1
Cumulative mean phase errors (MPE) for new phases.

The resolution levels shown are representative and do not indicate the increments used.

PDB
code

Solvent
(%) Symmetry

MPE on phases (�)
Starting
phases²

New
phases³10±9.0 AÊ 10±8.0 AÊ 10±7.0 AÊ 10±6.0 AÊ

1an8 75 P43212 60.2 60.6 68.8 72.4 356 1062
1cbf 69 P3121 48.9 58.0 68.7 77.8 273 901
1myg 65 I21 46.7 57.5 66.6 73.8 608 2019
1wsy 65 C2 54.0 65.0 73.0 79.5 890 3079
3gly 55 P212121 52.4 65.9 71.4 73.9 406 1211
2aai 54 P212121 48.9 60.3 70.1 76.8 440 1394
1olb 52 P212121 58.9 63.4 73.8 76.8 412 1271
1aac 51 P212121 54.5 63.7 70.9 76.4 504 1619
1ajg 50 P3121 53.5 66.6 72.8 78.2 311 1069
1alu 49 P3121 62.4 62.9 70.0 72.2 134 410
1an9 47 P212121 48.5 64.8 72.9 77.8 477 1546
1ako 47 P3121 57.9 58.2 70.3 79.8 187 598
1aqb 46 P212121 48.9 62.7 68.3 77.4 135 409
1al3 45 P21212 66.6 69.8 69.2 75.6 179 537
1am7 43 P212121 65.1 64.2 72.2 77.2 326 1024

² Number of independent starting re¯ections at 10 AÊ . ³ Number of independent new re¯ections, 10±6 AÊ .
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histogram. The procedure is repeated until

the wavelet coef®cients can be matched to

within prede®ned symmetry errors. The

electron density is then Fourier transformed

to obtain structure factors and the calculated

and `observed' magnitudes are compared. At

this point, the ¯owchart indicates that weights

should be applied to the calculated magni-

tudes before the whole process is repeated

until convergence is achieved and the reso-

lution increased. We have tried several

weighting schemes, but have so far found that

none has been able to improve the results

obtained by simply replacing the calculated

magnitudes by the observed magnitudes.

Although some weighting schemes give

improved results in the early cycles, after

several resolution increments the results are

no better and of course any weighting scheme

which very gradually steps towards the

correct magnitudes is also much slower. One

weighting scheme in particular that we have

investigated uses the information we already

have about the molecular envelope at this

resolution to provide phase-probability

distributions based on structure invariants.

Although we saw an improvement in the 10±

9 AÊ range, this was lost as the resolution was

increased further; this particular weighting

scheme is being investigated further. We

believe that if a suitable weighting scheme can

be found, the results could be improved

signi®cantly.

6. Results

The method has been tried on a large number

of model structures varying in size, solvent

content and space group. Stucture-factor

amplitudes were calculated from the coordi-

nates of a variety of proteins (ID codes are

given in Table 1) selected from the Protein

Data Bank (Berman et al., 2000). There is a

build-up of phase errors as the calculation

proceeds, but starting from a good 10 AÊ map

we are currently able to produce new phases

to about 6±7 AÊ with reasonable phase errors

on all the structures tested. Table 1 shows the

results for some of these. The phase errors

shown in the table are cumulative phase

errors, as are those in Fig. 4(a) which gives a

graphical representation of the results for

three of the proteins. However, the histogram

in Fig. 4(b) is not cumulative and shows the

phase errors for individual resolution bins.

Although a mean phase error of around 70�

for the new phases may seem high, the elec-

Figure 5
Stereoviews showing electron-density maps for myoglobin (PDB code 1myg) with the C�

trace shown in thick lines. (a) 10 AÊ starting map calculated from the ®nal model. (b) 6 AÊ map
with phases between 10 and 6 AÊ given by our method. (c) 6 AÊ map calculated from the ®nal
model. All electron-density maps are calculated at 1.25�, where � is the r.m.s. deviation from
the mean density of the map.



tron-density maps can still be seen to contain signi®cant new

information with this level of error. In most cases, the 10 AÊ

map is little more than a mask roughly covering the molecule

as in Fig. 5(a), whereas secondary structure can often be

identi®ed in the maps obtained to 6 AÊ with this level of phase

error. Fig. 5(b) shows the corresponding 6 AÊ map calculated

from phases which were extended from 10 AÊ and have a mean

error of 74�. This can be compared with Fig. 5(c), which shows

the real 6 AÊ map as calculated from the ®nal model. Helices

can easily be identi®ed in either of the 6 AÊ maps and it is likely

that further information, in the form of chemical knowledge,

can be introduced at this stage and the method extended.

Although the secondary structure of most proteins is not as

readily identi®ed as the helices of myoglobin, the new phases

do in general add extra detail to the electron-density maps in

the form of gaps between secondary-structure elements and in

adding electron density missing from the 10 AÊ map, as can be

seen in Fig. 6.

In order to make the situation more realistic, random noise

corresponding to 30±40� mean phase error (MPE) on the

starting phases was added. Although the ®rst cycles showed

higher phase errors, as the calculation proceeded the differ-

ence between the phase errors obtained in this case and those

from `perfect' starting phases became less and less. At the end

of the calculation, the phases obtained were no worse.

The method has also proved successful when the 10 AÊ

starting phases were obtained from a molecular-replacement

solution. A model constructed from the coordinates of human

deoxyhaemoglobin (Fermi et al., 1984) was positioned using

the program AMoRe (Navaza, 1990) in order to solve the

structure of trout carbonmonoxyhaemoglobin I (Tame et al.,

1996). This model was suf®ciently close to the true structure to

allow phases between 8 and 4 AÊ to be used for molecular

replacement and consequently the structure could be solved

easily. However, in our tests we only used phases to 10 AÊ from

this `correctly positioned' starting model, giving a set of

starting phases with a mean phase error of 22�. Experimental

magnitudes were used unless they had not been measured, in

which case magnitudes calculated from the starting model

were used. Table 2 shows that the mean phase errors are only

slightly worse than when the `correct' 10 AÊ phases and
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Figure 7
Cumulative phase errors for the proteins (a) 1wsy (56% solvent) and (b)
1an8 (75% solvent) when `correct' electron-density histograms are used
(medium line), when model electron-density histograms are used (thin
line) and when model electron-density histograms and wavelet-
coef®cient histograms are used (thick line).

Figure 6
Electron-density maps showing a loop region in oppA (PDB code 1olb),
with the C� trace in thick lines. (a) shows the 10 AÊ starting map and (b)
the map after phase extension to 6 AÊ .
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calculated magnitudes are used, showing that experimentally

measured magnitudes can be used successfully. The correla-

tion with the electron-density map calculated from the re®ned

model may also be lower because experimental magnitudes

are being compared with calculated magnitudes.

As only phases to 10 AÊ are needed, it is hoped that the

method can be used in cases when the molecular-replacement

model is much poorer and the usual procedure does not work.

Further tests were carried out with a starting model which had

been signi®cantly altered using the graphics program

QUANTA (Biosym-MSI, San Diego, CA). Some parts of the

model were deleted entirely and others, such as helices, were

moved in relation to each other to give a set of 10 AÊ phases

with a mean phase error of 47�. Again, the measured magni-

tudes were used where available and the results are also shown

in Table 2.

7. Discussion

We have tried to assess the relative importance of the

electron-density and wavelet-coef®cient histogram matching.

As electron-density histogram matching was found to be

limited in the resolution that could be attained in the ab initio

calculations (Main, 1998), we had not previously tried to use

this alone in the phase-extension procedure here. Further-

more, when we originally implemented the wavelet-histogram

matching, we were still using electron-density histograms

which were calculated from the known protein structure in

question and so we were using information which we would

not normally have. It therefore made no sense to try extending

the resolution using these histograms alone, although for the

sake of comparison we have performed exactly this and the

associated phase errors are shown by the medium line in Fig. 7.

The thick line in this ®gure shows the phase errors when

wavelet-histogram matching is used together with electron-

density histogram matching with histograms calculated from

our two-Gaussian model. It can be seen that even where the

electron-density histogram matching works quite well (Fig. 7a),

this consistently reduces the phase errors by about 10� though

no phase information beyond 10 AÊ is used. However, we were

surprised to ®nd that in several test cases the electron-density

histogram matching alone works almost as well when the two-

Gaussian model is used (the thin line in Fig. 7a). While

Fig. 7(a) is typical for a number of proteins, the situation is

different for those with particulary high solvent content, for

example the proteins 1an8 (75% solvent) and 1cbf (69%

solvent). Fig. 7(b) shows the results for 1an8 and it can be seen

that electron-density histogram matching with the `correct'

electron-density histograms (i.e. those calculated from the

actual values of the electron density) is now ineffective.

Although using the two-Gaussian model does improve the

results, the phase errors are still much higher than those seen

when wavelet-histogram matching is also used.

The use of wavelets to employ information at different

levels of detail inspired the incorporation of multi-resolution

histogram matching in the density-modi®cation program DM

(Cowtan et al., 2000). Cowtan has so far been unable to

demonstrate whether the multi-resolution histograms add new

information or if they are merely an indirect means of

downweighting higher resolution terms (Cowtan, 1999). We

have not been able to improve the results obtained by using

multi-resolution electron-density histogram matching without

the use of the wavelet transform.

To improve the method further, we propose to average over

a number of different trials in a Monte Carlo approach. This

will require differences to be introduced without the indivi-

dual runs deteriorating signi®cantly. It has been found that

sharpening the electron density by different amounts when

matching this histogram can provide such results, although the

reduction in phase error (about 2±6� from those shown in

Table 1) is slight. This can also be achieved by running the

program with different wavelet bases and averaging the

results. A discussion on wavelet transforms is given in Main &

Wilson (2000) and we only note here that a family of wavelet

functions is de®ned by a set of ®lter coef®cients which give the

relationship between the wavelets at one scale and those at a

scale twice as ®ne. The number of non-zero ®lter coef®cients

gives the support of the wavelets and as we are dealing with a

relatively small number of grid points, those of particularly

compact support are most suitable. A series of wavelet func-

tions have been constructed by Daubechies (1992) with 2, 4,

6, . . . non-zero ®lter coef®cients and to date we have only

used those of order 2, 4 and 6, as all have similar detail

histograms. Individually, these have all given similar results,

but when results from all three are averaged at the end of each

resolution cycle we have obtained a slight improvement. It is

hoped that the use of different wavelets, of which there are

many available, will increase the improvement. Those

considered have detail histograms with a greater variance than

those of Daubechies which are used at present and the

histogram prediction will need to be revised. It is hoped that

the differences between a wider variety of wavelet bases will

produce a more effective Monte Carlo procedure.

This work was supported by the BBSRC Structural Biology

and Design Application Initiative.
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